LRO and the Planetary Data System (PDS)

Dan Scholes

Applications Programmer

NASA's Planetary Data Systems' Geosciences Node

Washington University in St. Louis

scholes@wustl.edu

3/15

What is the Planetary Data System?

- □ The Planetary Data System (PDS) is a NASA organization that archives science data from NASA's planetary missions.
- □ PDS responsibilities are:
 - To help NASA missions and other data providers to organize and document their digital planetary data,
 - To collect complete, well-documented planetary data into archives that are peer-reviewed,
 - To make the planetary data available and useful to the science community,
 - To ensure the long-term preservation and usability of the data.

PDS Nodes

- □ PDS is a distributed system of discipline nodes
 - The Geosciences Node is one of the nine Discipline and Support Nodes of the PDS.
- Additional Data Nodes support specific data sets Examples:
 - LOLA Data Node
 - LROC Data Node

PDS Data Archives

- □ A data set is a collection of similar data products with supporting information.
 - For example, data from one instrument with the same level of processing
- □ Each data set contains at least one archive volume
 - Archive volumes may be based on PDS data set release number, mission phase, time ranges, etc.

Volumes by PDS Release Number

Archive volumes

- ☐ Archive volumes contain both scientific data and supporting documentation necessary to understand the data
 - Science objectives
 - Instrument configuration and calibration
 - Data acquisition, processing, and format

<u>Name</u>	Last modified	Size Description
Parent Directory		-
AAREADME.TX	13-Nov-2013 15:25	4.6K
CATALOG/	13-Nov-2013 15:25	-
DATA/	07-Mar-2014 16:25	-
DOCUMENT/	11-Mar-2014 15:25	-
ERRATA.TXT	07-Mar-2014 16:40	48K
EXTRAS/	15-Nov-2013 12:35	-
INDEX/	07-Mar-2014 16:35	-
VOLDESC.CAT	13-Nov-2013 15:25	2.0K

Archive Volume Directory

PDS Labels

- □ Each PDS data product has an associated PDS label.
- □ PDS labels contain metadata needed to understand and use data products.
- □ Labels are ASCII text in the form of keyword=value lines.
- □ PDS uses a data dictionary to provide standards for use of keywords and their values.

PDS Label Example

```
PDS VERSION ID
              = "PDS3"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 44
FILE RECORDS
              = 2556
              = "GLTM2BSH.TAB"
^TABLE
SPACECRAFT_NAME = "CLEMENTINE 1"
TARGET NAME = "MOON"
DATA_SET_ID = "CLEM1-L-LIDAR-5-TOPO-V1.0"
PRODUCT ID = "GLTM2B-SH"
PRODUCT RELEASE DATE = 1996-01-01
DESCRIPTION
OBJECT = TABLE
 ROWS
              = 2556
 COLUMNS
 ROW BYTES = 44
 INTERCHANGE FORMAT = ASCII
 DESCRIPTION = ""
```

```
OBJECT
                = COLUMN
   NAME = "COEFFICIENT DEGREE"
   DATA_TYPE = ASCII_INTEGER
   START_BYTE = 1
   BYTES
                 = "I2"
   FORMAT
                 = "N/A"
   DESCRIPTION = "The degree index m of the C and S
     coefficients in this record."
 END OBJECT
                 = COLUMN
 OBJECT
                  = COLUMN
   NAME
                 = "COEFFICIENT ORDER"
   DATA_TYPE = ASCII_INTEGER
   START BYTE
   BYTES
                 = "I3"
   FORMAT
                  = "N/A"
   DESCRIPTION = "The order index n of the C and S
     coefficients in this record."
 END OBJECT
                = COLUMN
END OBJECT = TABLE
END
```

Locating PDS LRO Archives

- ☐ Geosciences http://geo.pds.nasa.gov
 - DIVINER, LEND, Mini-RF
 - LOLA Data Node http://imbrium.mit.edu
 - LOLA, Radio Science (LOLA Data Node)
- □ Imaging http://img.pds.nasa.gov
 - LAMP
 - LROC Data Node http://lroc.sese.asu.edu
- □ PPI http://ppi.pds.nasa.gov
 - CRaTER
- □ NAIF http://naif.jpl.nasa.gov
 - SPICE Data
- □ PDS http://pds.jpl.nasa.gov

Direct Download of Data Set Files

- ☐ HTTP directory access (all nodes)
 - Manual browser downloads
 - Browser plugins
 - DownloadThemAll
 - Wget
 - Scripts and programs
 - FTP directory access (Geo Node)
 - Manual browser downloads
 - FTP clients
 - Command line
 - Wget
 - Scripts

PDS Imaging Node's Planetary Image Atlas

- □ LRO Support
 - LAMP
 - LROC
- Provides
 - Search
 - Browse
 - Download

http://img.pds.nasa.gov/search

LROC PDS Data Node

- □ LROC Specific
- Provides
 - Search
 - Map
 - Browse
 - Download

http://lroc.sese.asu.edu

PDS Geosciences Node's Orbital Data Explorer (ODE)

- □ LRO Support
 - DIVINER
 - LAMP
 - LEND
 - LOLA
 - LROC
 - Mini-RF
- Provides
 - Search
 - Map
 - Browse
 - Download

http://ode.rsl.wustl.edu/moon

Lunar Orbital Data Explorer (ODE)

- □ Allows users to:
 - search across missions and instruments
 - search across PDS nodes
- □ Supports additional PDS-Compliant lunar archives from:
 - Clementine
 - GRAIL
 - ISRO Chandrayaan-1
 - □ Forerunner (Mini-RF), Moon Mineralogy Mapper (M³)
 - Lunar Orbiter
 - Lunar Prospector

ODE Highlights

- □ Form and map product searches
 - Mission / Instrument / Product Type
 - Location, Time, and Observation Angle
 - Exact or partial Product ID searches
- □ Product detail pages
 - Product meta data
 - Browse images
 - Product and associated files
 - Related products

- Map context
- Links to product-specific web interfaces (LROC Data Node)
- Data set information
- □ Direct file downloads and cart system
 - Cart includes "on-the-fly mini-archive" option

Example:

Find DIVINER Products in ODE

Open ODE Moon: http://ode.rsl.wustl.edu/moon

Find DIVINER in ODE - Search

- 1) Select Data Product Search Tab
- 2) Open the Select One or More Desired Data Sets

Find DIVINER in ODE - Search

Select:

• GDR_L3

•EDRs are available under here

Find DIVINER in ODE - Search

OPTIONALLY:

- 1) Filter by:
 - Product Id,
 - Location, and/or
 - Time Range

2) Click "Preview Search Result Summary"

FINALLY:

3) Select

"View Results in Table"

Search Results & Product Details Page

Product Details

Features:

- Review browse, metadata, and label
- Review data set documentation including SISs
- Download individual files
- Add product to download cart

ODE – Map Search

Zoom/Pan Map

Filter Products by-

- Time
- Product Id
- Location

Control Map Layers

- Transparency
- Layer Order
- Footprint Layers
- Basemap Layers

Select one or more product type footprint layers

Additional ODE LRO Tools

http://ode.rsl.wustl.edu/moon/indextools.aspx

- □ LOLA RDR Query Tool
 - Database of all RDR records
 - ~6.5B individual points
 - Query by feature, location, orbit, time, product id, altitude range, and channels
- □ DIVINER RDR Query Tool
 - Database of all RDR records
 - ~223B individual points
 - Query by feature, location, orbit, time, product id, channel, detector, emission angle, solar incidence angle, solar azimuth angle, local time of day, and quality flags

22 - NASA Planetary Data Systems - Geosciences Node

Questions?

- □ Visit us at the PDS Geosciences Booth
 - Get detailed answers
 - Walk through your usage scenario
 - Share your feedback
- □ Contacts:
 - Dan Scholes
 - scholes@wustl.edu

